Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Biofuels, Bioproducts and Biorefining ; 17(1):71-96, 2023.
Article in English | Scopus | ID: covidwho-2244630

ABSTRACT

In recent years, the production and consumption of fossil jet fuel have increased as a consequence of a rise in the number of passengers and goods transported by air. Despite the low demand caused by the coronavirus 2019 pandemic, an increase in the services offered by the sector is expected again. In an economic context still dependent on scarce oil, this represents a problem. There is also a problem arising from the fuel's environmental impact throughout its life cycle. Given this, a promising solution is the use of biojet fuel as renewable aviation fuel. In a circular economy framework, the use of lignocellulosic biomass in the form of sugar-rich crop residues allows the production of alcohols necessary to obtain biojet fuel. The tools provided by process intensification also make it possible to design a sustainable process with low environmental impact and capable of achieving energy savings. The goal of this work was to design an intensified process to produce biojet fuel from Mexican lignocellulosic biomass, with alcohols as intermediates. The process was modeled following a sequence of pretreatment/hydrolysis/fermentation/purification for the biomass-ethanol process, and dehydration/oligomerization/hydrogenation/distillation for ethanol-biojet process under the concept of distributed configuration. To obtain a cleaner, greener, and cheaper process, the purification zone of ethanol was intensified by employing a vapor side stream distillation column and a dividing wall column. Once designed, the entire process was optimized by employing the stochastic method of differential evolution with a tabu list to minimize the total annual cost and with the Eco-indicator-99 to evaluate the sustainability of the process. The results show that savings of 5.56% and a reduction of 1.72% in Eco-indicator-99 were achieved with a vapor side stream column in comparison with conventional distillation. On the other hand, with a dividing wall column, savings of 5.02% and reductions of 2.92% in Eco-indicator-99 were achieved. This process is capable of meeting a demand greater than 266 million liters of biojet fuel per year. However, the calculated sale price indicates that this biojet fuel still does not compete with conventional jet fuel produced in Mexico. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

2.
Biofuels, Bioproducts and Biorefining ; 2022.
Article in English | Scopus | ID: covidwho-2157708

ABSTRACT

In recent years, the production and consumption of fossil jet fuel have increased as a consequence of a rise in the number of passengers and goods transported by air. Despite the low demand caused by the coronavirus 2019 pandemic, an increase in the services offered by the sector is expected again. In an economic context still dependent on scarce oil, this represents a problem. There is also a problem arising from the fuel's environmental impact throughout its life cycle. Given this, a promising solution is the use of biojet fuel as renewable aviation fuel. In a circular economy framework, the use of lignocellulosic biomass in the form of sugar-rich crop residues allows the production of alcohols necessary to obtain biojet fuel. The tools provided by process intensification also make it possible to design a sustainable process with low environmental impact and capable of achieving energy savings. The goal of this work was to design an intensified process to produce biojet fuel from Mexican lignocellulosic biomass, with alcohols as intermediates. The process was modeled following a sequence of pretreatment/hydrolysis/fermentation/purification for the biomass-ethanol process, and dehydration/oligomerization/hydrogenation/distillation for ethanol-biojet process under the concept of distributed configuration. To obtain a cleaner, greener, and cheaper process, the purification zone of ethanol was intensified by employing a vapor side stream distillation column and a dividing wall column. Once designed, the entire process was optimized by employing the stochastic method of differential evolution with a tabu list to minimize the total annual cost and with the Eco-indicator-99 to evaluate the sustainability of the process. The results show that savings of 5.56% and a reduction of 1.72% in Eco-indicator-99 were achieved with a vapor side stream column in comparison with conventional distillation. On the other hand, with a dividing wall column, savings of 5.02% and reductions of 2.92% in Eco-indicator-99 were achieved. This process is capable of meeting a demand greater than 266 million liters of biojet fuel per year. However, the calculated sale price indicates that this biojet fuel still does not compete with conventional jet fuel produced in Mexico. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

3.
Applied Catalysis B: Environmental ; : 121735, 2022.
Article in English | ScienceDirect | ID: covidwho-1926194

ABSTRACT

This study explored a scalable decomposition-catalysis route to effectively valorize disposable COVID-19 face mask into tunable value-added products. The metal-doping carbonaceous catalysts (M/Cs) were successfully synthesized through a single-step energy-efficient thermal process. The modest decomposition-catalysis of face mask over Zn/C gave rise to a relatively high yield (73.52%) of liquid oil with 99% of selectivity toward jet fuel range (C8 – C16) hydrocarbons. Besides, the scalable decomposition-catalysis of face mask over Ni(50)/C at 800 ℃ was observed to thoroughly transform face mask into gas with the cumulative gas yield of 967 NmL/gmask, involving 49.90vol% of H2 and 40.90vol% of CH4. Moreover, a dense, entangled growth of carbon nanotubes were formed on the surface of M/Cs. In brief, this study developed a scalable and promising route by using M/Cs for the valorization of COVID-19 face mask into hydrocarbon fuel or coupling harvest of H2-enriched fuel gas and carbon nanotubes.

SELECTION OF CITATIONS
SEARCH DETAIL